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Abstract

Background: Genome-wide knockout studies, noncoding deletion scans, and other large-scale studies require a
simple and lightweight framework that can quickly discover and score thousands of candidate CRISPR guides
targeting an arbitrary DNA sequence. While several CRISPR web applications exist, there is a need for a high-
throughput tool to rapidly discover and process hundreds of thousands of CRISPR targets.

Results: Here, we introduce FlashFry, a fast and flexible command-line tool for characterizing large numbers of
CRISPR target sequences. With FlashFry, users can specify an unconstrained number of mismatches to putative off-
targets, richly annotate discovered sites, and tag potential guides with commonly used on-target and off-target
scoring metrics. FlashFry runs at speeds comparable to commonly used genome-wide sequence aligners, and
output is provided as an easy-to-manipulate text file.

Conclusions: FlashFry is a fast and convenient command-line tool to discover and score CRISPR targets within
large DNA sequences.
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Background
The CRISPR prokaryotic immune system has trans-
formed genome engineering. As typically used, CRISPR
proteins are directed to create double-stranded DNA
breaks at location(s) in a genome matching a specified
guide sequence [1]. These double-stranded breaks are
commonly repaired by a non-homologous end joining
(NHEJ) pathway, which can leave small insertions or
deletions (indels) at the genomic target site. These
site-specific, targeted indels can be used to perturb en-
dogenous gene function [2], encode information [3], or
characterize the function of genomic sequence [4–6].
Although CRISPR editing is specific [7], not all guides

function with the same efficiency or specificity. For in-
stance, double-stranded breaks can occur at genomic loca-
tions (“targets”) that are an imperfect match to the
supplied guide sequence (termed “off-targets”). To reduce
the chance of such unintended genome editing, guide se-
quences can be chosen that contain less overlap with all
possible alternative targets in the genome. The importance

of specific differences in the guide sequence, the genomic
location and chromatin environment of the target, and the
method of guide delivery all appear to affect the distribu-
tion and rate of this off-target cutting [8].
To help users choose both specific and active guide se-

quences, the community has created a large number of
CRISPR target selection tools, most of which are made
available as web applications [8–10]. Such tools are con-
venient for researchers screening a small set of guides or
scanning a single genomic locus like an exon. Unfortu-
nately, these tools require batched queries for large sets,
which makes it more challenging to scan loci or whole
genomes for guides. Additionally, some guide screening
tools rely upon genome-wide alignment tools to gener-
ate putative off-target lists for each guide. For practical
reasons, these aligners are generally designed to quickly
discover only the most similar sequences with a limited
number of mismatches in comparison to the guide
(typically ≤3), whereas experimental efforts have shown
activity at off-target sequences containing upwards of six
mismatches to the guide [11]. Some of these tools also
miss a subset of potential off-targets altogether, regard-
less of the mismatch distance [12]. Lastly, end users may
need to design guides to non-model organisms,
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engineered DNA sequences, or genomic sequences that
contain single nucleotide variants [13]. To address these
issues, we have created FlashFry, a command-line tool
for discovery and characterization of CRISPR guide
sequences from arbitrary genomic regions.

Implementation
Database creation
FlashFry generates a block-compressed binary database
of all potential target sequences within a given reference
sequence. This FASTA-formatted sequence can be the
genome of a canonical model organism, the transcrip-
tome of a new species, or a custom-built reference that
integrates strain or cell-line-specific variants. This data-
base is generated for a specific CRISPR enzyme and pro-
tospacer adjacency motif (PAM) combination and can
be constructed in approximately an hour on a standard
computer (Table 1). In this database, sequences that
contain the required CRISPR PAM sequence are orga-
nized into sorted prefix-bins (Fig. 1). This prefix length
can be specified at runtime, with larger bins being auto-
matically sub-indexed to reduce lookup times. The
resulting data structure can then be quickly searched by
comparing a target sequence’s prefix against the bin’s se-
quence. To save space and to further improve search
times, target sequences and their number of occurrences
within the genome are stored as a 64 bit-encoded value
within each bin. Each target sequence is then followed
by additional binary-encoded values for each position
within the genome. These bins are compressed using the
HTSJDK library [14], and an index is created for each
bin’s offset within this file.

Search
Given the inherent inefficiencies of high-mismatch
searches, FlashFry uses a filtering approach to find can-
didate off-targets. It does so by precomputing a traversal
over target bins with less than k mismatches to each
guide in the candidate (such filtering approaches are well
reviewed in Navarro et al. [15]). Each target sequence is
compared to the prefix of every bin, and only those bins
with less than or equal to k mismatches are recorded as
potential search locations. The list of visited bins then

aggregated for all targets, these bins are loaded sequen-
tially, and the genomic target sites within are compared
against each target with a matching prefix. When a large
number of bins are to be searched (> 95% of all bins),
which is common with large guide screens or with a high
k mismatch threshold, FlashFry will instead search the full
database to avoid the overhead cost of disk seeks.
To further reduce search times, FlashFry uses bit par-

allelism when determining mismatches between the
binary-encoded target and candidate genomic matches
[15]. Bit parallelism uses bit-shifting and optimized pro-
cessor instructions to compare the binary representa-
tions of nucleotide strings in a small number of
compute operations, avoiding a character by character
string comparison. FlashFry is currently compatible with
target sequences up to 24 bases in length, although it
could be expanded to longer target sequences, as our
bin storage approach allows recovery of the prefix of a
target sequence (allowing target sequences of length 24
plus the prefix length). Lastly, off-target discovery is
halted for candidate guides that have exceeded a
user-defined number of off-target hits, saving compute
time by eliminating poor candidates early from the puta-
tive target pool. This off-target limit can be set by the
user, defaulting to 2000 off-targets.
We then compared the runtime and memory usage of

FlashFry to the commonly used CRISPR characterization
tools Cas-OFFinder and CRISPRseek [16, 17]. We also
included BWA in this comparison, which is used as a
backend search tool for some CRISPR web applications
[8, 18]. For all tools, per-target search times decrease
with the number of targets and the allowed number of
mismatches (Fig. 2a). FlashFy and BWA run approxi-
mately two to three orders of magnitude faster than the
conventional CRISPR target discovery tools. FlashFry
outperforms BWA for larger target sets and at higher
allowed mismatches between the candidate guide and
its genomic targets, though at the cost of higher memory
usage for very large target sets (Fig. 2a, b).

Guide characterization and scoring
The goal of a typical biologist is to pick a subset of
highly active and specific CRISPR guide sequences from

Table 1 A sample of computational times (h:m:s) required to build a FlashFry database for versions of the Caenorhabditis elegans,
human, mouse, and Drosophila melanogaster genomes for common CRISPR enzymes. All timing analyses were run with default
FlashFry parameters on an Amazon r4.large instance, limited to 8 GB of memory limited and one CPU core

Genome CRISPR/Cas9 (NGG) CRISPR/Cas9 (NGG/NAG) Cpf1 (TTTN)

Caenorhabditis elegans—235 0:1:28 0:2:55 0:2:13

Human—hg38 1:15:15 2:42:27 0:56:23

Mouse—mm10 1:02:13 2:21:11 0:43:13

Drosophila melanogaster—BDGP6 0:2:38 0:5:01 0:2:14
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a full list of candidate targets within a region of interest.
Therefore, FlashFry includes many commonly used
scoring approaches, including off-target metrics such as
cutting-frequency determination (CFD) [12], and the
Hsu et al. scoring scheme [19], and both the
Moreno-Mateos and Vejnar et al. (CRISPRScan) and the
Doench et al. 2014 on-target metrics [11, 16]. We have
also included a set of basic design criteria filters, includ-
ing flags for high and low GC content, warnings for
poly-thymine tracts (which can prematurely terminate
polymerase III transcription), and putative targets that
have reciprocal off-targets within the region of interest
(potentially leading to deletions of the intervening
sequence). Lastly, regions can be annotated with infor-
mation from external BED files, which may be useful for
highlighting repetitive sequences or regulatory regions.

Results
To demonstrate how FlashFry can be used to create a
CRISPR library, we targeted all of the genes within the

cancer gene census, a curated list of commonly mutated
genes in cancer patients [20]. We retrieved genomic se-
quences corresponding to all 10,808 exons; allowing only
NGG PAMs, FlashFly discovered off-targets for 443,296
candidate SpCas9 targets in 250 min (0.03 s per guide) on
an Amazon r4.xlarge instance. We then excluded 16,736
target sequences that exceeded the maximum off-target
count (> = 2000), and 66,637 that were annotated as hav-
ing extreme GC content or runs of thymines that can limit
expression in certain plasmid delivery systems. The result-
ing targets were annotated with the CRISPRScan
on-target and Hsu et al. off-target scores and aggregated
into a combined rank score using the Schulze method (see
the “Methods” section). The resulting table can then be
used to generate a diverse library of CRISPR guides for a
perturbation screen. For instance, over 99% of gene bodies
have two targets with a Hsu et al. score over 75 and a
CRISPRScan score over 0.50. At the exon level, 74 and
71% have two targets both with scores above 75 and 0.50
respectively, allowing for redundant knockout of most

Fig. 1 Discovery and scoring of CRISPR target sites. FlashFry schematic. The genome of interest is scanned for targets that match the PAM of the
specified CRISPR enzyme. These genomic targets are then aggregated and bit-encoded into a database of compressed bins, sorted by their prefix. This
database can then be searched by comparing the prefix of a candidate target against the prefix of the bins, and bins within the allowed mismatch
(orange) can be examined for individual off-targets in the genome. The resulting off-target list is aggregated and used by various scoring metrics
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exons. These filtered candidate libraries can be easily
processed into the format required by a wide variety of
custom microarray manufacturers.

Conclusions
The needs of genome-wide knockout studies, noncod-
ing deletion scans, and other large-scale studies or
method development projects are unfortunately not
well-met by the abundant CRISPR web applications.
FlashFry, an efficient and flexible toolset, fills this
void and can be used to rapidly discover and
characterize tens to hundreds of thousands of guides
from an arbitrary sequence quickly and with a rela-
tively low memory footprint. For method developers,
we also expose a simple interface for implementing
additional scoring schemes, given the sequence con-
text of a target and its off-target hits within the
genome. FlashFry has no system dependencies outside

of the JVM and avoids many of the configuration
pitfalls and complexity of tools that rely on genome
aligners to discover off-target sequences. Documenta-
tion, code, and tutorials are available on the FlashFry
GitHub website.

Methods
Software availability
FlashFry is written in Scala and bundled as a single
stand-alone Jar file, easily run on any system with an
installed Java virtual machine (JVM). The tool is freely
licensed under version 3 of the GPL, and code, docu-
mentation, and tutorials are available on the GitHub
page: https://aaronmck.github.io/FlashFry/

Database generation times
We timed FlashFry’s database creation on an Amazon’s
Elastic Compute Cloud r4.large instance type using an

a

b

Fig. 2 Comparison of the runtimes and memory usage of common CRISPR target discovery tools over an increasing number of targets and
permitted mismatches. Five random CRISPR guide sets were run for each target-count (x-axis) and permitted mismatch level (y-axis). Plotted are
the mean runtime with standard deviation bars for each set of replicates. a Running time per sequence for increasing numbers of target sites
and b their corresponding memory usage. FlashFry benefits from aggregating all guide-to-genome comparisons in one pass of the database,
matching BWA’s performance at hundreds of targets for five mismatches, and thousands of targets at four mismatches. Only BWA and FlashFry
were run for the 10,000 and 100,000 target searches
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SSD filesystem. FlashFry was limited to one CPU with
the ‘taskset -c 0’ command and 8GB of memory using
the java “-Xmx8g” argument.

Off-target tool comparisons
Runtime and memory comparisons were run on Ama-
zon’s Elastic Compute Cloud using the r4.large instance
type with an Intel Xeon CPU at 2.30 GHz. Each machine
instance was setup using a Docker configuration file,
which is provided within our GitHub codebase. Each
tool was limited to a single processor with the “taskset”
Linux command, and compute and memory usage were
recorded with the “time -v” command. The full pipeline
is available in the GitHub repository, along with the tim-
ing results of individual runs. Each guide-count and per-
mitted mismatch (3,4, and 5) value was replicated five
times using the human HG38 reference. Guide counts of
1, 10, 100, and 1000 were run for all tools. These ran-
dom guides were generated using FlashFry’s “random”
analysis module with the “—onlyUnidirectional” flag set
to ensure a single candidate per sequence. Additionally
10,000 and 100,000 guide iterations were run for Flash-
Fry and BWA, but were not run with Cas-OFFinder and
CRISPRseek for practical reasons. Individual tool config-
urations are detailed below.

FlashFry
FlashFry version 1.8.1 was run in discovery mode with
java option “-Xmx8g” for 1–1000 target runs, and
“-Xmx15g” for 10,000 and 100,000 target searches. Mis-
matches were set with the “–maxMismatch” command,
and defaults were used for all remaining parameters.

BWA
BWA runtime includes the initial alignment step (aln)
and mapping to genomic coordinates (samse). BWA aln
was run with parameters taken from Haeussler et al. [8]:
aln -o 0 -m 20000000 -n <mismatch_count> -k
<mismatch_count> -N -l 20 <humanRef>, using BWA
commit tag e624290ad42f6c1deea87332337b08302faece48
from the following repository: https://github.com/lh3/bwa.

Cas-OFFinder
A custom script was used to convert the random target
FASTA file into the Cas-OFFinder input with the
appropriate mismatch setting, using the 20(N)NGG
search string. This conversion time was not towards
Cas-OFFinder’s runtime or memory usage. Cas-OFFinder
requires a custom Linux kernel driver supporting OpenCL
to be installed on the machine, and our Docker instance
pre-configures Intel’s OpenCL version 2017_7.0.0.2568
_x64. Cas-OFFinder was then run using the CPU “C” op-
tion against the input file.

CRISPRseek
We ran CRISPRseek using a custom R script and the
“Rscript” command-line tool (the associated code is avail-
able in our GitHub repository). Timing data includes load-
ing the relevant libraries and resources, executing the
off-target search, and as it was impossible to separate dis-
covery of off-targets and scoring, the scoring of guides.

Cancer gene census calculations
All processing was done on a standard Amazon AWS
r4.xlarge compute instance with an Intel Xeon CPU at
2.30 GHz. The cancer gene census (CGC) dataset, version
83 was downloaded from the CGC portal [20]. Intervals
were generated using custom Scala scripts capturing the
RefSeq exonic sequence of each gene using the model with
the largest number of exons, adding 10 bases up and down-
stream. The corresponding genomic sequences were ex-
tracted from the human HG19 genome using Picard’s
ExtractSequences (https://broadinstitute.github.io/picard/).
Sites were then discovered and scored using FlashFry with a
maximum of four mismatches to off-targets, and a max-
imum of 2000 off-target sequences per candidate. Off-target
scoring was run with 30 GB of memory, taking 15,024.70 s.
The Hsu et al. off-target scoring scheme [19] and the
Moreno-Mateos and Vejnar et al. [10] on-target metric were
run against the 426,560 sites, and an aggregate ranking was
produced by supplying FlashFry the “rank” scoring option.
The rank option will produce a rank-ordered assignment for
each target based on the median rank of individual scores
and will additionally use the Schulze method to rank the top
1000 targets [21]. Lastly, the best and second-best hits per
individual exon and gene were calculated with Python and
R scripts, available in the GitHub repository.

Availability and requirements
Project name: FlashFy
Project home page: http://aaronmck.github.io/FlashFry/
Operating system(s): Platform independent
Programming language: Scala/Java/JVM
Other requirements: Java 1.8 or higher
License: GNU GPL v3
Any restrictions to use by non-academics: None

Acknowledgements
We thank the members of the Shendure lab for their feedback, suggestions,
and critical reading of the manuscript, especially Molly Gasperini, Vikram
Agarwal, and Martin Kircher.

Funding
This work was supported by grants from the Paul G. Allen Family Foundation
(JS), an NIH Directors Pioneer Award (JS; DP1HG007811). AM was supported
by a fellowship from the NIH/NHLBI (T32HL007312). JS is an investigator of
the Howard Hughes Medical Institute.

Availability of data and materials
All scripts, code, tools, and data are available on the FlashFry website:
https://aaronmck.github.io/FlashFry/ .

McKenna and Shendure BMC Biology  (2018) 16:74 Page 5 of 6



Authors’ contributions
AM developed the method; AM and JS wrote the manuscript. Both authors
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors have read the manuscript and approve of its publication.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Genome Sciences, University of Washington, Seattle, WA,
USA. 2Howard Hughes Medical Institute, Seattle, WA, USA.

Received: 20 May 2018 Accepted: 22 June 2018

References
1. Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems:

harnessing nature’s toolbox for genome engineering. Cell. 2016;164:29–44.
2. Wang X, He L, Goggin S, Saadat A, Wang L, Claussnitzer M, Kellis M. High-

resolution genome-wide functional dissection of transcriptional regulatory
regions in human. bioRxiv 193136; https://doi.org/10.1101/193136.

3. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J.
Whole-organism lineage tracing by combinatorial and cumulative genome
editing. Science. 2016;353:aaf7907.

4. Gasperini M, Findlay GM, McKenna A, Milbank JH, Lee C, Zhang MD, et al.
CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1
expression via thousands of large, programmed genomic deletions. Am J
Hum Genet. 2017;101:192–205.

5. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide
CRISPR screen in a mouse model of tumor growth and metastasis. Cell.
2015;160:1246–60.

6. Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, et al. CRISPRi-
based genome-scale identification of functional long noncoding RNA loci in
human cells. Science. 2017;355:eaah7111.

7. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al.
Rational design of highly active sgrNAs for CrIsPr-Cas9–mediated gene
inactivation. Nat Biotechnol. 2014;32:1262–67.

8. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, et al.
Evaluation of off-target and on-target scoring algorithms and integration
into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148.

9. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a
web tool for the next generation of CRISPR genome engineering. Nucleic
Acids Res. 2016;44:W272–6.

10. Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha
MK, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9
targeting in vivo. Nat Methods. 2015;12:982–8.

11. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-
seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas
nucleases. Nat Biotechnol. 2015;33:187-97.

12. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al.
Optimized sgRNA design to maximize activity and minimize off-target
effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.

13. Canver MC, Lessard S, Pinello L, Wu Y, Ilboudo Y, Stern EN, et al. Variant-
aware saturating mutagenesis using multiple Cas9 nucleases identifies
regulatory elements at trait-associated loci. Nat Genet. 2017;49:625–34.

14. HTSJDK: A Java API for high-throughput sequencing data (HTS) formats,
version 2.8.1 [Computer software]. 2018. Retrieved from: https://github.com/
samtools/htsjdk.

15. Navarro G. A guided tour to approximate string matching. ACM Computing
Surveys ACM. 2001;33:31–88.

16. Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor
package to identify target-specific guide RNAs for CRISPR-Cas9 genome-
editing systems. de Crécy-Lagard V, editor. PLoS One 2014;9:e108424–e108427.

17. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that
searches for potential off-target sites of Cas9 RNA-guided endonucleases.
Bioinformatics. 2014;30:1473–5.

18. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics. 2010;26:589–95.

19. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al.
DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol.
2013;31:827–32.

20. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, et al. A
census of human cancer genes. Nat Rev Cancer. 2004;4:177–83.

21. Markus S. A new monotonic and clone-independent single-winner election
method. Voting Matters. 2003;17:9-19.

McKenna and Shendure BMC Biology  (2018) 16:74 Page 6 of 6


